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in the IRC Hamiltonian. A calculation of the tunneling 
rate of the reaction HNC - HCN was carried outa by 
the sue of the IRC Hamiltonian of Miller and co- 
workers,46b obtaining the interesting result that the rate 
constant value - lo5 s-l was achieved about 8 kcal/mol 
below the classical threshold. 
Concluding Remarks 

The IRC approach in chemodynamical studies has 
just begun to take shape. The present stage of the 
theory is mainly to establish a framework. With this 
in mind the theory has been formulated to be as broadly 
applicable as possible. At this stage, it may be tolerable 
to sacrifice pragmatism because of the shortage of ef- 
ficient computing procedures. It is expected that in the 
near future, however, actual calculations will become 
feasible using a new generation of computers. In an- 
ticipation of these advances, the theory should be armed 
with mathematical foundations. 

In particular, the global character of configuration 
space should be clarified by the use of global coordi- 
nates. The solution of the multidimensional 
Schrodinger equations, the rate problem in general 
nonadiabatic cases, the intercell tunneling rate involving 
infinite cells, the treatment of the nonzero angular 
momentum case using the general kinetic energy for- 
mula of eq 11, and IRC approach for excited state re- 
actions, and so forth will be explored by mathematical 
methods. 

I t  is a pleasure to acknowledge the reviewers of the manuscript 
and the editors for their suggestions and comments. 
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physically reasonable simplification is needed. 
One way of making the rate calculation practicable 

is to reduce the problem to one dimension. The first 
such attempt was made in the absolute rate calculation 
of proton migration in the enol-form mal~naldehyde.~~ 
We can imagine a picture of a large-amplitude nuclear 
motion in which the reacting system proceeds along the 
IRC with normal vibrational motions in the plane 
perpendicular to the direction of IRC. We assume in 
this approximation a “vibrational ad iaba t i~ i ty”~~ with 
regard to the large amplitude “translational” motion 
along the IRC. 

The result42 for malonaldehyde proton migration did 
not agree with experiment, although the adiabatic ap- 
proach illustrated the one-dimensional reduction. The 
rate constant obtained ( - 1014 s-l) was 102-103 times 
larger than that estimated from experimental studies 
(-loll Obviously, this result was partially caused 
by the small potential barrier, less than 1 kcal/mol, 
adopted in the calculation. The numerical result could 
have been no doubt improved by taking the barrier 
height to be 11 kcal/mol which was recently obtained 
by theoretical  calculation^.^^ Such a presumption is 
actually ascertained by a simpler tunneling calcula- 
tion.12* 

The Hamiltonian valid for a narrow region along the 
IRC is called the IRC Hamiltonian. The effect of vi- 
brational nonadiabati~ity4~ can be taken into account 

(42) S. Kato, H. Kato, and K. Fukui, J .  Am. Chem. SOC., 99, 684 
(1977). 

(43) R. A. Marcus, J.  Chem. Phys., 43,1598 (1966); 46,959 (1967); M. 
Quack and J. Roe, Ber. Bunsen ges. Phys. Chem., 78,240 (1974); 79,170 
(1975). 

(44) G. Karlstrom, H. Wennentrom, B. Jomon, and S. FonBn, J.  Am. 
Chem. SOC., 97,4188 (1975); E. M. Fluder and J. R. de la Vega, ibid., 100, 
5265 (1978); J. Catalin, M. Yttiiez, and J. I. Fernhdez-Alonso, ibid., 100, 
6917 (1978). 

~~- -I 
(46) (a) S. K. Gr&, W. H. MilleGY. Yamaguchi, and H. F. Schaefer, 

111, J .  Chem. Phys., 73,2733 (1980); (b) W. H. Miller, N. C. Handy, and 
J. E. Adams, ibid., 72, 99 (1980). 

The Semiclassical Way to Molecular Spectroscopy 
ERIC J. HELLER 

Department of Chemistry, University of California, Los Angeles, California 90024, 
and Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

Received June 22, 1981 

This Account deals with a new perspective on the 
interaction of light with molecules. Although much of 
chemistry may take place in the dark (literally and 
figuratively), our knowledge of fundamental molecular 
and chemical processes is often greatly enhanced when 
we shed light on the subject! Light of various wave- 
lengths and intensites can be used as a probe of mo- 
lecular structure and dynamics, and sometimes light 
acts as a reagent or product in a chemical reaction. 

Very often, we can profit from a classical or semi- 
classical picture of the interaction of light with mole- 
cules. It is easy, for example, to imagine a heteronuclear 
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diatomic molecule as two partially charged masses 
connected by a spring, oscillating and absorbing energy 
due to a resonantly oscillating electric field. This pic- 
ture enhances our understanding of infrared vibrational 
transitions. 

In electronic absorption and emission spectra, we also 
have a classical picture of sorts, namely, the Franck- 
Condon idea of a vertical transition in which the slug- 
gish nuclei retain their position and momentum while 
the electrons quickly make a transition. After the 
electrons have made a transition, the nuclei experience 
new forces; they find themselves displaced relative to 
the equilibrium geometry of the new potential surface, 
and interesting dynamics should ensue. Unfortunately, 
most discussions of electronic transitions cut short any 
allusions to dynamics and explain the absorption 
spectrum in terms of Franck-Condon overlaps of the 
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Figure 1. (A) Photoabsorption between two Bom-Oppenheimer 
potential surfaces. The Franck-Condon wave packet &), arising 
out of 4 = px ( x  is shown on the lower surface, 4 and $(t) on the 
upper), takes a circuitous path in this case, “grazing” 4(0) several 
times on the way to dissociation. The result is an absorption band 
with some low-resolution vibrational structure. (B) Direct dis- 
sociation leading to a broad, featureless absorption band. 

initial nuclear wavefunction with a time-independent 
vibrational eigenfunction of the upper electronic po- 
tential surface. We (and the nuclear wave function) are 
left hanging; we are given no explanation of the time 
evolution of the haplesg nuclei which, once the photon 
is absorbed, are ready to move in ways that determine 
the spectra. 

What happens to the nuclei, in an internal coordinate 
picture, is depicted in Figure 1. The initial nuclear 
wave function is really a localized wave packet, being 
typically a ground or low-lying vibrational state. The 
packet slides downhill, following at  first the path of 
steepest descent, changing shape (see Figure 1). This 
path very closely approximates a classical path, at least 
for a few vibrational periods. The wave packet dy- 
namics corresponds to some specific vibrational motion 
that can be visualized in terms of bond distances, an- 
gles, etc. How the wave packet dynamics determine 
electronic and Raman spectra and the intuitive and 
computational advantages of this picture are the sub- 
jects of this Account. 

The need to understand and predict the spectra of 
large isolated molecules places the theorist in an awk- 
ward position. On the one hand, rules or “recipes” for 
calculating spectra have been known for 50 years or 
more. On the other, the ingredients (wave functions, 
energies, matrix elements, etc.) that go into the recipes 
are virtually impossible to calculate for large molecules. 
Putting aside the question of finding potential surfaces, 
there is no present or foreseeable computer that will 
allow the determination of vibration-rotation eigens- 
tates when the density of states is lo5 to 1014 per 
wavenumber, a not uncommon situation. 

Fortunately, our needs shift from having to know 
individual transition probabilities in small molecules 
(or large molecules at  very low energy) to having to 
understand spectral features in larger molecules at  
moderate energies which may be composed of thou- 
sands or trillions of individual transitions. Thus, if we 
cannot determine the matrix element of the dipole p, 

because +k is one state (with 26 coordinates, say) of lo9 
per cm-l, we can take solace in the knowledge that pok 

p0k = (+Ob&’k) (1) 

will never be measured! However, a somewhat 
smoothed absorption spectrum is measurable, and a 
recipe is 

(2) 

where A(w - wk) is a function peaked at  w = wk and q 
is a constant. Now, the recipe (eq 2) seems straight- 
forward enough, but the ingredients are far too exotic. 
To predict an electronic absorption spectrum may easily 
require 1O1O or more pok’s, each of which we cannot 
compute! How then do we compute the absorption 
spectrum? 

A hint as to how to proceed is provided with analogy 
to a branch of spectroscopy that long ago abandoned 
the idea of dealing with eigenstates of the total system. 
In the spectroscopy of condensed phases, a manifestly 
time-dependent approach is adopted. Spectra are 
formulated in terms of Fourier transforms of appro- 
priate autocorrelation functions. For example, the in- 
frared absorption spectrum is given by1 

4 4  = rlwc No - Wk)lPOk12 
k 

(3) 

where c is a simple known function of frequency and 
where the brackets imply an average over the density 
matrix p for the entire system. The “system” may be 
anything from a small molecule in a pure quantum state 
to a large ensemble of molecules at  finite temperature. 
In the latter situation, the time-dependent nature of eq 
3, together with the expectation that finite temperatures 
will wash out many quantum effects, has led to time- 
dependent classical and semiclassical approaches for 
finding the spectra. For example, Berens and Wilson2 
perform classical molecular dynamics calculations with 
a few simple quantum corrections and evaluate eq 3 for 
diatomic molecules in condensed media. Koszykowski 
and Marcus3 use an approximate classical binary col- 
lision approach to calculate the autocorrelation func- 
tion. In a study closer in spirit to ours, Lax4 examined 
spectra of solids. There is a large literature on the 
autocorrelation approach to spectra, much of it based 
in one way or another on classical mechanics. The 
lesson is that, when there are enough degrees of free- 
dom, adopt a time-dependent approach and imple- 
ment it classically or semiclassically. 

The same conclusion, at  least as regards the desira- 
bility of a time-dependent formulation, can be reached 
by considering the spectrum of a typical large molecule. 
Experimental conditions or extreme congestion of levels 
may render the spectrum featureless on a scale of less 
than 10 to 100 wavenumbers. This corresponds, via the 
Uncertainty Principle, to 1-0.1 ps. Thus, if we write 
down the correct time-dependent expression for the 
spectrum, we shall have to evaluate it for less than a 
picosecond to predict the spectrum to the available 
resolution. Very often, much broader spectral features 
are of interest, and, for example, the broad Franck- 
Condon envelope of an electronic transition can typi- 
cally be obtained with 1-5 fs worth of dynamics! In 
many such spectra, especially in electronic transitions 
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(2) P. H. Berens and K. R. Wilson, J. Chem. Phys., 74,4872 (1981). 
(3) M. L. Koszykowski and R. A. Marcus, J.  Chem. Phys., 68, 1216 

(4) M. Lax, J. Chem. Phys., 30, 1752 (1952). 
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Figure 2. A typical “states and ladders” setup, with an initially 
excited state, S, and two manifolds, {LJ and {MI. 

with a drastic change in potential (e.g., charge transfer, 
photodissociation, or photoelectron spectra), the broad 
envelope is often all that is observable. 

Once we have reformulated various intramolecular 
spectroscopies in a time-dependent, fully quantum- 
mechanical way, we have far more palatable recipes for 
calculating spectra for large molecules. Most often, we 
find ourselves compromising a bit on the ingredients 
by using semiclassical input dynamics. If the semi- 
classical method should prove insufficient, the next step 
of time-dependent variational approahces5 is still far 
easier than finding eigenfunctions. 

There are two great advantages to a semiclassical 
approach to molecular spectra. First, we all acquire 
some classical intuition born of experience in the or- 
dinary world. Refinement of this intuition through the 
explicit study of classical mechanics is reviving, with 
the recently added features of computer simulations 
and graphics. The second advantage has to do with a 
tremendous surge of interest in classical dynamics 
among astronomers, physicists, and now chemists, 
spurred and accompanied by a new qualitative under- 
standing of the dynamics of complicated nonlinear 
systems (e.g., molecules!).6 This new qualitative un- 
derstanding has been greatly aided by the advent of 
large, fast computers. Much of the recent, purely 
classical work on the stability of motion of dynamical 
systems and the question of the onset of stochasticity 
or chaotic motion in these systems is directly relevant 
to molecular spedroscopy and intramolecular dynamics. 

Before proceeding to specific insighb and new tech- 
niques for molecular spectroscopy and dynamics, pro- 
vided by our semiclassical time-dependent approach, 
we mention a class of related and much better known 
time-dependent methods known under various names 
such as Green’s function approach, Bixon-Jortner 
method, level coupling methods, etc. These techniques 
are all time dependent, but not semiclassical. Such 
methods, which we call “states and ladders”, are in our 
opinion often only partially successful in overcoming 
the problems of high density of states in large mole- 
cules. Let us consider Figure 2, which shows a typical 
setup in the states-and-ladders approach. A spectro- 
scopically populated state IS) is coupled to states {lL)J 
which are further coupled to states (IM)]. The M-ma- 
nifold is a ladder for the states (JL)), which in turn is 
a ladder for the state IS). 

(5) E. J. Heller, J.  Chem. Phys., 64, 63 (1976). 
(6) R. G. Helleman in “Fundamental Problems in Statistical 

Mechanics”, Vol. 5, E. G. D. Cohen, Ed., North Holland, New York, 1980. 

First, let us discuss the successes of the states-and- 
ladders approach. (1) It is completely general. Any 
molecule can, in principle, be described in this way. (2) 
It is quite successful at qualitatively explaining decay 
of prepared states, buildup and decay of the ladders, 
etc. (3) When something is really known about the 
levels and their couplings, the states-and-ladders me- 
thod can be extremely useful in understanding the flow 
of probability in the m~lecule .~ 

The disadvantages, in our opinion, of the states- 
and-ladders method are (1) most often the states, lad- 
ders, and especially the couplings between them are 
poorly known and poorly understood. The extremely 
generality of these methods, together with the lack of 
knowledge about the quantities that go into them, is a 
dangerous combination. Many phenomena can be 
formally “explained” with precious little specific input 
information. (2) Even if the states and couplings are 
known, the resulting time dependence expressed in 
terms of the states may be extremely complicated, even 
though the molecule may really be doing something 
quite simple when viewed in another picture. 

We hope that, after reading the following, the reader 
will agree that the semiclassical time-dependent method 
is indeed “another picture” that can provide a great deal 
of insight and predictive power for the intramolecular 
dynamics relevant to several types of spectroscopy. 

Time-Dependent Formulation 
Photoabsorption Formula. Here, we give the rec- 

ipes for electronic absorption and emission, and later, 
for Raman scattering. Our general approach is aimed 
at subsequent semiclassical implementation and the 
recipes, though simple and exact within the  Born-Op- 
penheimer approximation, are perhaps unfamiliar. 
Derivations may be found in ref 8-12, but for now the 
reader is simply asked to believe the recipes and share 
in the fun of understanding their implications. 

Consider Figure 1A. Here, we show two Born-Op- 
penheimer potential surfaces, each relevant to two vi- 
brational degrees of freedom, x and y .  Shown also in 
the ground-state vibrational wave function x and ver- 
tically above it, with an arrow representing the photo- 
absorption, the wavefunction 4 which is simply 

4(X,Y)  = P(X,Y) .X(X,Y)  (4) 
The electronic transition moment 1.1 between the two 
surfaces is a function of coordinates often taken to be 
a constant in the Condon approximation. “Upstairs”, 
4 is not a stationary state; it is a displaced wave packet, 
and it will evolve as 4(t)  according to the time-de- 
pendent Schrodinger equation 

( 5 )  

where H is the vibrational Hamiltonian for the upper 
surface. The absorption spectrum is then given by9J0 

(7) H. W. Galbraith and J. R. Ackerhalt, “Theoretical Treatment of 

(8) E. J. Heller, J. Chem. Phys., 62, 1544 (1975). 
(9) E. J. Heller, J. Chem. Phys., 68, 2066 (1978). 
(10) E. J. Heller, J. Chem. Phys., 68, 3891 (1978). 
(11) K. C. Kulander and E. J. Heller, J. Chem. Phys., 69,2439 (1978). 
(12) S.-Y. Lee and E. J. Heller, J. Chem. Phys., 71, 4777 (1979). 

Collisionless Multiphoton Excitation in SF,”, to be published. 
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Figure 3. (Left) Absolute value of (4 ld ( t ) )  for the case of Figure 
1B. Three important time scales, T1, T2, and T3, are shown. 
(Right) Spectrum arising out of Figure 1A and the autocorrelation 
function. Note how T1, T2, and T3 affect the spectrum. 

where C is a constant, w is the frequency of incident 
radiation, and Eo is the energy of x. Thus, the overlap 
of 4(t)  with 4, Fourier transformed, gives the spectrum. 
Once (1$14(t)) is known, all frequencies are trivially 
obtainable. (Emission is treated the same way, with o3 
replacing w in eq 6 and the roles of the upper and lower 
surfaces reversed.) 

Where could the Franck-Condon principle be better 
displayed than in eq 6? Equation 6 helps to cast away 
doubts about the instantaneous nature of the electronic 
transition relative to the actual slow arrival of the light 
impinging on the molecule: the spectrum at frequency 
w is the Fourier transform of the dynamics following 
an instantaneous Franck-Condon transition at t = 0. 
The instantaneous transition could be effected with a 
very short light pulse. If lingering doubts exist about 
what “really happens’’ in the laboratory, the derivation 
given by Kulander and Hellerll shows that, while the 
laser of frequency w is turned on, “little pieces” of the 
ground-state wave function are constantly being 
brought upstairs (with phase eiUt) while the pieces al- 
ready upstairs are functionally just 4(t) at various times 
t. As these pieces return to their birthplace, new pieces 
are still coming up, constructively (or destructively) 
interfering with the old pieces and causing absorption 
maxima (or minima). 

Spectral Features and Dynamics. Now we can 
understand a great deal, in physical terms, about the 
absorption spectrum arising out of the situation de- 
picted in Figure 1A. The spectrum is shown in Figure 
3 (right). The maximum in the absorption envelope 
(dashed line) has long been known to be close to the 
vertical distance to the upper potential surface mea- 
sured from the Franck-Condon vicinity of the state x. 
But what about the width of the envelope? By the 
time-energy Uncertainty Principle, this broadest feature 
of the spectrum, its width, comes from the shortest 
feature in time. This feature is the initial decay in the 
overlap (# ( t ) )  (Figure 3, left), caused by the move- 
ment of 4(t)  directly downhill along the path of steepest 
descent. This falloff is very nearly Gaussian for large 
displacements, and if we assign it a standard deviation 
TI, then the standard deviation of the resulting Gaus- 
sian envelope is A o  = l/Tl. The trajectory of the 
quantum packet 4(t) is almost exactly classical for short 
times if we compute the expectation values 

X t  = (4(t)lXld(t)) = ( X ) t  

P x t  ( P x ) t  (7) 
and compare with the trajectory. In fact, Ehrenfest’s 
theorem tells us this should be the case. Clearly, the 
steeper the upper surface in the Franck-Condon region, 

the faster the decay in (414(t)) and the broader the 
absorption envelope. Anything that happens at  longer 
times can only add increasingly detailed structure to 
the spectrum, but it cannot change the envelope of the 
spectrum. 

After the initial falloff in (414(t)), the overlap stays 
low until t 7‘2, when the wave packet returns to the 
vicinity of its birthplace, as shown in Figure 3 (left) and 
Figure 1A. The “grazing collision” of 4(t) with 4 c a w s  
a bump in the overlap at t N T2. Since 4(t2) is dis- 
placed and spread relative to 4, the overlap obeys 
I(414(t2))1 < l(414(0))l. Subsequent bumps of pro- 
gressively lower amplitude may occur. The recurrences 
in the time domain, spaced by time T2, cause structure 
in the frequency domain spaced by 2r /T2 (Figure 3, 
right). 

The final outcome of the packet in our example is 
dissociation. This means that the progressive decay in 
the peak overlap is permanent, and unresolvable 
broadened lines result in the spectrum. The frequency 
deviation uw of the lines, assuming a Gaussian damping 
of the subsequent overlap peaks (dashed line in Figure 
3, left), is l/T3. 

We have now begun to understand spectral features 
in terms of physical wave packet dynamics. As another 
example, the reader can perhaps see that, if the 
Franck-Condon region had been as seen in Figure lB, 
the spectrum would have been broader than in Figure 
3 (right) (the potential is steeper) and structureless. 
Figure 1B corresponds to a direct dissociation, Figure 
1A to a “vibrational predissociation”. 

If we start with an initially excited vibrational wave 
function x, some interesting effects arise which also 
succumb easily to the same time-dependent formalism. 
For example, in one dimension, the absorption spec- 
trum out of an eigenstate usually “reflects” the nodal 
structure of that state: we get one large “bump” in the 
envelope for absorption out of the ground state, two 
bumps for the first excited state, and so on. This is not 
always true in two or more dimensions. It depends on 
whether the nodes in the wave function 4 are parallel 
or perpendicular to the downhill direction on the upper 
surface. If the nodal surfaces are perpendicular to the 
downhill direction, they will be seen in the absorption 
spectrum as low-resolution bumps. If parallel, they will 
be silent in the spectrum. This can be seen from a 
slightly more detailed consideration of the time de- 
pendence and the modifications that the nodal structure 
introduces. It can also be seen with the aid of the 
multidimensional reflection approximation, fmt derived 
in ref 9. 

It is not hard to see, from formula 6, why large 
molecules very often have smooth, almost structureless, 
absorption spectra. In order for structure in the spec- 
trum to appear, there must be at  least a partial recur- 
rence in (414(t)) within a picosecond or so after the 
initial decay. After a picosecond, the resulting ab- 
sorption structure caused by a recurrence will likely be 
washed out by rotational band contours, solvent effects, 
etc. For the recurrence to occur, all atoms in the 
molecule must return simultaneously to near their 
starting positions. Even one out of place will “kill” 
(414(t)), for this overlap involves all the coordinates. 
For a large molecule, certain factors can nonetheless 
cause a recurrence: (1) the displacement is small in the 
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excited state, so (r#+b(t)) has very little space in which 
to wander; (2) symmetry dictates that 4 is displaced in 
only one totally symmetric coordinate, so that, 4( t )  
tends to return, if in distorted form, to the Franck- 
Condon region; (3) accidents (rare) occur in which 
(4l$(t)) returns to the Franck-Condon region in non- 
obvious way; this can happen if 4(0) is near a classical 
periodic orbit with short period. These periodic orbits 
do exist, even at high energy, where the dynamics is 
very anharmonic. 

From the above description, it should be clear that 
the more phase space $( t )  has to rattle around in, the 
less likely it is to come back any time soon to its 
birthplace. As we wait longer and longer for 4(t)  to 
return, we shall have to look on a finer and finer fre- 
quency scale to see structure. For this to be true, the 
gaps between eigenstates that  have significant 
Franck-Condon intensity must get smaller and smaller. 
In the limit in which $( t )  can explore the whole phase 
space available at that energy (stochastic limit), all the 
Franck-Condon factors not required to be zero by 
symmetry must have significant intensity. These ideas 
were the basis for a criterion for detection of stochastic 
or chaotic motion in a molecule via the spectrum.13 

Fermi Resonance. Our time-dependent analysis can 
go far enough to explain the spectral signature of a 
Fermi resonance which "turns on" only after some 
threshold energy.I4 Consider a totally symmetric 
stretch (8) interacting with some non totally symmetric 
mode (u). The first anharmonic term in the potential 
that can couple these modes has the form A m 2 .  If, as 
in many electronic transitions, a high-symmetry mole- 
cule retains the same symmetry in the excited state, 
only s is displaced. Still, energy can flow from s into 
u. This is permitted since the coupling term Asu2 has 
the proper symmetry and can create even overtones in 
the u-mode at the expense of a quantum of s. If s has 
twice the frequency of u (w, = 2 4 ,  the term xSu2 is all 
set to couple s and u directly and strongly. Exactly this 
happens in the famous Fermi resonance involving the 
symmetric stretch and the bend in C02. The usual 
splitting and intensity borrowing of levels occurs. But 
what if w, # 2w,? It turns out that w, = mu, 2w, = 3wu, 
w, = 3wu, etc., are all resonant also but weaker than the 
2:l resonance when hsu2 is the coupling term.14 If the 
frequency ratio does not involve small integers, the 
situation is even more interesting, and far more com- 
mon. Strangely, this more common situation has re- 
ceived little attention. 

Let us examine the qualitative features of a Fermi 
resonance between two initially nonresonant modes. 
Clearly, larger coupling h will help couple the two modes 
in the off-resonant case, as will increased energy (dis- 
placement) in s, since this makes hsu2 effectively a 
larger term. Thus, the resonance turns on above some 
threshold in energy. This happens in CHC13,15 where 
the two modes are the C-H stretch and the C-H bend. 
The Franck-Condon spectrum shows only weak com- 
bination lines near the symmetric stretch overtones 
below resonance, but the combination lines grow rapidly 
in intensity above resonance. This occurs at u N 6 in 
the C-H stretch overtones in CHC13. Well above res- 

(13) E. J. Heller, J. Chem. Phys., 72, 1337 (1980). 
(14) E. J. Heller, E. B. Stechel, and M. J. Davis, J. Chem. Phys., 73, 

(15) H. L. Fang and R. L. Swofford, J. Chem. Phys., 72,6382 (1980). 
4720 (1980). 
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Figure 4. (A) Semiclassical Franck-Condon spectrum for the 
potential surface and wave packet shown in the inset. (B) Con- 
verged quantum mechanical calculation of same. (C) 1(4+$(t))l 
(quantum), showing TI, T,, T,, and T4 time scales. 

onance, clusters of lines appear near the would-be 
positions of the pure symmetric stretch overtones. 

A close correspondence was shown to exist between 
the classical and quantum Fermi resonances of this 
type.14 The quantum and classical onset energy and the 
extent of resonance are very similar. 

Below, we will describe methods that use classical 
trajectories to get a complete and accurate molecular 
spectrum.16 Applied to Fermi resonances of the type 
just discussed, we get Figure 4. The spectrum is that 
of a wave packet displaced along the s coordinate and 
coupled via Asu2 to the u coordinate (see the insert in 
Figure 4A). The numerically converged quantum 
mechanical basis set calculation is shown in Figure 4B.14 
Note the growth of the Fermi resonant clusters above 
E E 6.8, which is a resonance threshold energy. The 
semiclassical spectrum obtained from the trajectories 
is shown in Figure 4A. 

The onset of Fermi resonance between two modes is 
separate from the question of the onset of chaotic dy- 
namics of the type that would lead to RRKM behavior, 
for example. Two modes can be happily in resonance 
with one another, sharing energy between themselves 
but not with other modes. The resonant exchange of 
energy between the modes can occur in a very regular 
oscillatory fashion. 

The function I (  $l$(t))l for the case of Figure 4, A and 
B, is shown in Figure 4C. At early times, it is similar 
to the photodissociation case, Figure 2A. All three time 
scales, TI, T2,  T3, can be seen in Figure 4, in addition 
to a new one T4, which occurs at about T = 40. This 

(16) E. J. Heller, J. Chem. Phys., 75, 2923 (1981) 
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new time scale corresponds to the resonant return of 
energy from the u stretch back to the s stretch. The 
time T4 N 40 should give rise to structure on the fre- 
quency scale of 2a/40 = 0.15. This is indeed roughly 
the splitting between the peaks within the overtone 
bands seen in Figure 4, A and B. The bandwidths of 
the overtone clusters is determined by the T3 decay. 
This decay is the result of the spreading of 4(t)  out into 
the u domain, reducing its overlap with 4 after each 
successive period in the symmetric coordinate. 

Evidently, since only classical trajectories were used 
to generate Figure 4A, all four t ime scales Ti-T4, their 
underlying dynamics,  and their resulting spectral 
features are essentially classical in nature. 

Raman Scattering. The time-dependent wave- 
packet description of Raman scattering leads to even 
more insight and practical utility than the one-photon 
absorption and emission just discussed. In vibrational 
Raman scattering, there is a great wealth of information 
about potential surfaces and dynamics obtained by 
monitoring the Raman profiles of several final vibra- 
tional modes as a function of incident frequency. This 
will become clear in the examples below. First, let us 
establish the “usual” Kramer-Heisenberg-Dirac ex- 
pression and then the time-dependent expression that 
we prefer. 

Suppressing the directional aspects of the transition 
moments p,  the Raman amplitude to go from the 
ground vibrational state 10) to the nth vibrational state 
In) (assuming a single contributing excited electronic 
potential surface) is given by the Kramer-Heisenberg- 
Dirac expression 

a+n(w) = 

+ (nonresonant term) (8) 
(nbh!’k) ( $ k b ‘ l O )  c 

k E,, + h w  - Ek +ir 
In this expression, w is the frequency of incident ra- 
diation, $k is the kth vibrational eigenstate on the ex- 
cited surface, and E& is the energy of that state. 

It is often exceedingly impractical to take the KHD 
equation literally. Depending upon the displacement 
of the equilibrium position in the excited state, the $k 
that contribute most may be highly vibrationally ex- 
cited. For a polyatomic molecule with 6 to 10 or more 
degrees of freedom, this makes the calculation of the 
$k essentially impossible. The $k are nonseparable 
functions of all the internal coordinates of the molecule. 
No computer, present day or contemplated, could 
possibly cope with the numerical determination of the 
$k’S when there are as many as lo6 eigenstates per 
wavenumber. This is a common situation. Altogether, 
billions of levels may contribute to the sum in the KHD 
expression. Even when there are only a few degrees of 
freedom and the energies are low enough that the 
density of states is small, the technology for finding true 
eigenfunctions of a given potential surface is not well 
developed. Furthermore, finding these eigenfunctions 
in the energy regime of the absorption spectrum (the 
resonant Raman regime) requires knowledge of the 
potential surface for all configurations appropriate to 
this regime in energy. 

Can Raman scattering really be so complicated? 
Certainly not; for  large molecules, on or o f f  resonance, 
a tiny fraction o f  the  excited-state potential surface 
determines the  intensity into a given f inal state In), 

and there is no need to  know any  of the $k’s or Ek’s or 
any  of the  matrix elements that appear in eq 8! This 
is easily seen with the alternate r e ~ i p e : ’ ~ ~ ’ ~  
a-n(w) = 

eiot- rt ( & I & ) )  d t  + (nonresonant term) (9) L* 
where 

14) = PIX) ,  l4n) = 4 X n )  

and $(t) is the same wavefunction used in the photo- 
absorption equation (eq 6). The Raman scattering into 
a given final state n is proportional to the square of the 
amplitude given in eq 8 or 9. 

The procedure for Raman scattering is thus very 
similar to that for photoabsorption. The same dynam- 
ics of the same wavepacket is involved, but it is pro- 
jected onto different final states rather than onto itself. 
A half-Fourier integral is also involved. Once we have 
found 4(t)  by any means, we might as well compute 
both the absorption and the Raman cross sections, for 
they are equally easy. 

The ingredient 4(t)  is generally vastly easier to cal- 
culate than the +k eigenfunctions. After all, we have 
4(0) given to us, and 4(t)  does not become terribly 
complicated within a few vibrational periods. There are 
many ab initio ways of finding $(t) ,  including time- 
dependent basis-set variational methods, but we have 
not particularly pursued these, preferring the semi- 
classical approach discussed below. The localized 
wave-packet nature of 4 and the relatively short times 
it needs to be propagated virtually cry out for a semi- 
classical approach. 

The integral in eq 9 is on (0,m). Why, then, do we 
claim that only short times are required to evaluate the 
expression? There are two reasons. Most obvious, one 
has the phenomenological damping factor r in the in- 
tegrand. This is common practice in Raman scattering 
(r appears in the denominator of the KHD expression) 
and represents the effect of dephasing due to other 
degrees of freedom not explicitly included in the wave 
functions 4 and &. Typically, l / F  corresponds to a few 
vibrational periods. 

Second, and less obvious, is that, if the incident fre- 
quency w is detuned from resonance, an Uncertainty 
Principle argument holds, A w r  N 1, where Aw is the 
detuning from resonance and r is interpreted as the  
lifetime of the wavepacket $( t )  on  the  excited state. 
This was shown by Lee and Heller,12 and it arises out 
of a rapid, self-canceling oscillation of the integrand in 
eq 9 off-resonance. Thus, we can easily perform sub- 
picosecond dynamics on the upper surface by detuning 
a CW laser from resonance! A beautiful illustration of 
this is given in Figure 6, explained below. First, let us 
examine Figure 5,  A and B. They show the wavepacket 
&(t)  transported temporarily to the upper surface, un- 
dergoing dynamics there for a short time (i.e., 7 )  and 
coming back down. Both “up” and “down” trips are 
Franck-Condon; position and momentum are con- 
served. If the forces in the excited state in the 
Franck-Condon region are along the x coordinate 
(Figure 5A), then the x mode will be enhanced and the 
y mode will not as resonance is approached and 4(t)  
lives longer upstairs. This is because 4(t)  is displaced 

(17) D. J. Tannor and E. J. Heller, to be published. 
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Figure 5. (A) Raman scattering from an upper potential surface, 
where the wave packet acquires motion in the x direction initially; 
x-mode overtones will be enhanced in the Raman as resonance 
is approached. (B) y modes enhanced due to y-motion initially. 

during the course of its motion along the x direction, 
and this, together with the momentum it has acquired, 
causes it to overlap excited states in the x mode once 
it is back “downstairs”. The horizontal arrows indicate 
the momentum of $(t) at the time of its return to the 
lower surface. If the forces are along the y direction, 
of course then the y mode is enhanced (Figure 5B). 
This picture of near-resonant and resonant Raman 
scattering clearly shows the paramount importance of 
the Franck-Condon region and that part of the poten- 
tial surface sampled by $(t) in its early motion. Other 
regions of the potential surface are not important, nor 
is there any information in the Raman intensities about 
the potential surface in these regions. 

In comparison with the KHD expression, which must 
“know” the entire potential surface covered by the + i s ,  
a time-dependent version is extremely efficient. Sup- 
pose we assume conservatively that a point on the 
surface has been “explored” by $(t) if $ reaches 1% of 
its maximum amplitude there in time t. Then, for 16 
degrees of freedom, a Franck-Condon displacement of 
0.1 A, average mass of 12 au, and average frequency of 
lo00 cm-’, the packet explores less that one part in lo4 
of the surface during the first ten vibrational periods! 
For a displacement of 0.2 A, this figure drops to one 
part in a million. On resonance, ten periods would be 
a typical time required to define the Raman amplitude 
to experimental resolution. Off-resonance, as men- 
tioned above, the times can be much shorter. Thus, 
even with rather small molecules and modest dis- 
placements, we stand to gain orders of magnitude in 
efficiency by using eq 9 instead of eq 8. 

A very instructive example is illustrated in Figure 6, 
which shows $ and its early motion on an anharmonic 
potential surface (inset). A Franck-Condon region was 
chosen so that the force initially is entirely along the 
x coordinate. Once the wavepacket has moved some- 
what, it also experiences a force along the y axis, and 
eventually significant y displacement occurs. Our ar- 
gument about time scales is gratifyingly confirmed in 
Figure 6, A and B. Below resonance, the wave packet 
“lives” only for a short time and only x displacement 
occurs. Notice that the fundamental Raman scattering 
to the y mode is far below that of the x ,  both below and 
above resonance (see Figure 6A). Further, if we delib- 
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Figure 6. (A) Potential surface, wave-packet 4, and the early 
motion of &(t). (Insert) x-mode and y-mode fundamental in- 
tensities (b1) below, in, and above resonance for moderate 
damping. (B) Same as (A) except for large damping constant r. 

erately quench the dynamics on the upper surface by 
choosing a large r, then the y fundamental is drastically 
quenched relative to the 3c at all incident frequencies 
(Figure 6B). This example dramaticdy illustrates how 
information about short-time dynamics is contained in 
the Raman studies. 

Short Times and Long Times. Time is of the es- 
sence in our semiclassical approach. If spectra are 
needed to high resolution, the implied times may be too 
long for an accurate semiclassical determination of 4( t ) .  
All time-dependent semiclassical approximations get 
worse as time increases. Thus, the semiclassical spectra 
determined from an autocorrelation function become 
less trustworthy at higher resolution. If higher resolu- 
tion information is needed, either we have to introduce 
variational corrections or we have to invent even better 
semiclassical methods. 

Things are delightfully simple at  very short times. 
And in spite of the simplicity, much can still be learned 
that is new. For example, a simple formula pertains to 
the intensity ratio of the fundamentals of two modes 
in preresonant Raman spectra.18 It is derived by 
short-time approximations to the dynamics. For any 
two modes x and y ,  we have 

(18) E. J. Heller in “Potential Energy Surfaces and Dynamics 
Calculations”, D. C. Truhlar, Ed., Plenum, New York, 1981. 
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where Pkl is the Raman intensity into the fundamental 
of the y mode, W/ is the vibrational frequency at  the 
y mode in the ground state, V,l is the slope of the upper 
potential surface in the y direction, evaluated at the 
equilibrium of the ground state, etc. This remarkably 
simple formula is proving itself quite accurate for 
preresonant Raman spectra (just below the 0-0 band 
in absorption). The formula assumes that the transition 
moment is a weak function of position. Remembering 
the AUT = 1 arguments, the fact that the ratio of in- 
tensities depends only on the immediate Franck-Con- 
don region squares with the notion of short-time dy- 
namics, in the preresonance frequency domain. 

Semiclassical Methods. While the physical picture 
of wave-packet dynamics for molecular spectroscopy is 
appealing, and the short-time analytical results such as 
eq 10 are useful, we still need a reliable means for the 
numerically propagating wave packets &) for many 
(anharmonic) degrees of freedom. We have described 
such methods in the literature.lOJ1 They rely upon the 
flexible properties of Gaussian wave packets. Basically, 
three steps are involved. (1) Expansion of $(O) 4 in 
terms of complex Gaussians gi; i.e., (b = Cicgi .  This is 
an accurate and well-defined procedure. (2) Propaga- 
tion of the gi individually. This is accomplished in 
wholly classical fashion; i.e., trajectories determine every 
possible parameter in the Gaussian: d ( t )  = Cicigi(t), 
and projection of 4(t) onto 4 in some other state, as the 
spectroscopy dictates. These projections only involve 
overlaps between Gaussians. (3) Superposition of the 
Gaussians (according to the coefficients ci) to form &), 
projection onto 4 (the overlaps are all Gaussian in 
form), and Fourier transform. 

Raman and absorption spectra calculations on 
semiempirical potential surfaces of up to 33 degrees of 
freedom have been carried out successfully using our 
wave-packet technique.17 

The propagation takes place at  various levels of so- 
phistication. The simplest method is the frozen 
Gaussian approximation (FGA),16 wherein the Gaussian 
packets rigidly follow a guiding classical trajectory. The 
next level of accuracy is the “thawed” Gaussian ap- 
proximation (TGA),l0*l1 in which the Gaussians are 
allowed to distort as time evolves. Finally, we can allow 
the coefficient ci to vary with time according to a 
time-dependent variational prin~iple,~ using the thawed 
(or frozen) Gaussians as a basis set. This is (in prin- 
ciple) an ab initio technique capable of numerical con- 
vergence. 

We have used the wave packets for a host of other 
purposes not emphasized in this short review. These 
include photodissociation,“ll~lg criteria for the onset of 
~tochasticity,’~ as a “phase-space’’ basis set in standard 
matrix diagonalization,20 and the investigation of local 
modes and dynamical t ~ n n e l i n g . ~ l - ~ ~  Ongoing devel- 
opments of the method include incorporation of rota- 
tions, finite-temperature spectra, and spectra in the 

(19) R. C. Brown and E. J. Heller, J .  Chem. Phys., 75,  186 (1981). 
(20) M. J. Davis and E. J. Heller, J.  Chem. Phys., 71, 3383 (1979). 
(21) E. J. Heller and M. J. Davis, J. Phys. Chem., 85, 307 (1981). 
(22) M. J. Davis and E. J. Heller, J .  Chem. Phys., 75, 246 (1981). 
(23) R. T. Lawton and M. S. Child, Mol. Phys., 37,1779 (1979); 40,733 

(1980). 

presence of nonadiabatic curve crossings. 
Conclusion 

In a certain sense, vibrational dynamics has lagged 
behind electronic structure calculations in that it has 
lacked simple, low-level methods analogous to Har- 
tree-Fock, or Huckel theory, etc. That is, it has lacked 
an intuitive and practical set of tools to treat “real” 
molecules with many degrees of freedom, high energies, 
and high density of states. (Perturbation and varia- 
tional methods are well developed for vibrational 
spectroscopy of small molecules at low energies.9 The 
classical S-matrix methods26 and quasi-classical meth- 
ods so important for scattering and unimolecular dy- 
n a m i c ~ ~ ~ ~ ~ ’  seem not to have previously developed 
counterparts for bound-state dynamics and spectros- 
copy. We are developing a new set of tools for molec- 
ular spectroscopy of bound states and photodissociation. 
The dynamics and many spectral features resulting 
from a given potential surface are now calculated with 
enough ease that ab initio and semiempirical theorists 
of electronic structure can look more often to the dy- 
namicists for the experimental implications of their 
calculations. 

The time-dependent wave-packet formulation of 
spectroscopy offers intuitive and computational assis- 
tance in several traditional fields of chemistry. For 
absorption spectra, the method could be called a 
Franck-Condon analysis without Franck-Condon fac- 
tors.28 For example, a photochemist interested in shifts 
in shape, maxima, and width of electronic absorption 
bands as a function of solvent or structural changes can 
understand these shifts in terms of changes in very local 
properties of the ground and excited potential surfaces 
in the Franck-Condon region. Our methods also 
strongly suggest preresonance and resonance Raman 
spectroscopy as additional probes of such properties. 

The wave-packet picture further aids the photo- 
chemist if we follow it for longer times: Does the bond 
that breaks result forthwith from dynamics starting in 
the Franck-Condon region, or is intra- or intermolecular 
energy transferred (corresponding to a less direct 
classical dissociative path)? If an internal conversion 
is required before dissociation, does the wavepacket 
dynamics lead to regions where radiationless coupling 
is more favorable? After the dissociation, what is the 
distribution of energy among the fragments? All these 
questions are naturally formulated and answered in a 
time-dependent framework. 
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